Hands-on LOVE Quickstart

Complete the steps described in the Tutorial section to create Box Runner: a simple 2D LOVE
game in the Lua programming language.

See https://github.com/AndrewDiMola/box-runner for an animated demo, license information,

and the complete source code.

LOVE overview

LOVE is a framework for developing 2D games with Lua on Windows, Mac OS X, Linux,
Android and iOS.

https://github.com/AndrewDiMola/box-runner
https://love2d.org/

Prerequisites
To run Box Runner, you'll need:

e LOVE11.3

e \Windows or Mac OS X

Box Runner tutorial

Complete the steps described in this section to create Box Runner: a simple 2D LOVE game in
the Lua programming language.

In Box Runner, a yellow box represents the player and a red box represents the enemy. Player
and enemy information is stored in the player and enemy objects, and game information, like
the title of the game and the current score, is stored in a game object. RGB values for the
rectangle objects that represent the player, enemy, and game world are stored in a colors
object.

When the Spacebar is pressed, the yellow player box jumps. If the yellow player box collides
with the red enemy box, the game is over, at least until the player presses the Spacebar to play
again.

Score is based on the time it takes to collide with the enemy box, and the speed of the red
enemy box increases over time.

Step 1: Initialize game data

Create a file named main. lua in a folder named box runner and copy in the following code:

player = {}
enemy = {}

game = {}
colors = {}

Next, create a new function, love.load():

function love.load()
game.SCREEN_WIDTH, game.SCREEN_HEIGHT = love.graphics.getDimensions()

game.FONT = love.graphics.newFont(24)
game .WINDOW_TITLE = "Hello Platforming World!"

https://love2d.org/

game.TITLE = "BOX RUNNER: NOW WITH FASTER BOXES"
game.RETRY "GAME OVER: Press Space to play again"
game.SCOREBOARD = "SCORE: "

game.score =

game.is_active = true

colors.DEFAULT = { ,
colors.TEXT = {0, 0, 0}
colors.BACKGROUND = {66 /
colors.GROUND = { /
colors.SHAPE_OUTLINE = {9,
colors.PLAYER = { / ,
colors.ENEMY = { /

player.x = game.SCREEN_WIDTH - (game.SCREEN_WIDTH /
player.y = (game.SCREEN_HEIGHT /) +
player.START_Y = player.y

player.WIDTH =

player .HEIGHT =

player.JUMP_HEIGHT = player.y - (2 * player.HEIGHT)
player.GRAVITY = player.JUMP_HEIGHT /

player.is jump = false

enemy.WIDTH = player.WIDTH /

enemy .HEIGHT = player.HEIGHT /

enemy.x = game.SCREEN_WIDTH + enemy.WIDTH
enemy.y = (game.SCREEN_HEIGHT /) +
enemy.START_X = enemy.X

enemy.START_SPEED =

enemy.speed = enemy.START_SPEED
enemy.is_collide = false

love.window.setTitle(game.WINDOW TITLE)
love.graphics.setFont(game.FONT)

Step 2: Draw the player, the enemy, and the game world

In a new function, love.draw(), copy in the following code:

function love.draw()

love.graphics.setColor(colors.DEFAULT)
love.graphics.setBackgroundColor(colors.BACKGROUND)

DrawGameText ()

DrawGround(@, game.SCREEN_HEIGHT / , game.SCREEN_WIDTH,
game .SCREEN_HEIGHT)

DrawPlayer(player.x, player.y - player.HEIGHT, player.WIDTH,
player.HEIGHT)

DrawEnemy(enemy.x, enemy.y - enemy.HEIGHT, enemy.WIDTH, enemy.HEIGHT)
end

Next, create three new functions: DrawGround(), DrawPlayer (), and DrawEnemy ().

function DrawGround(x, y, width, height)
love.graphics.setColor(colors.GROUND)
love.graphics.rectangle("fill", x, y, width,
love.graphics.setColor(colors.SHAPE_OUTLINE)
love.graphics.rectangle("line", x, y, width,
end

function DrawPlayer(x, y, width, height)
love.graphics.setColor(colors.PLAYER)
love.graphics.rectangle("fill", x, y, width, height)
love.graphics.setColor(colors.SHAPE OUTLINE)
love.graphics.rectangle("line", x, y, width, height)
end

function DrawEnemy(x, y, width, height)
love.graphics.setColor(colors.ENEMY)
love.graphics.rectangle("fill", x, y, width,
love.graphics.setColor(colors.SHAPE_OUTLINE)
love.graphics.rectangle("line", x, y, width,

Add another function, DrawGameText (), which renders all of the formatted text in the game,
including the active score.

function DrawGameText()
love.graphics.setColor(colors.TEXT)
if (game.is_active) then
love.graphics.printf(

game.TITLE,
(game.SCREEN_HEIGHT / 10) - (game.FONT:getHeight() / 2),
game .SCREEN_WIDTH,
"center"
)
else
love.graphics.printf(
game .RETRY,
(game.SCREEN_HEIGHT / 10) - (game.FONT:getHeight() / 2),
game .SCREEN_WIDTH,
"center"
)
end
love.graphics.printf(
game . SCOREBOARD,

- (game.FONT:getWidth(game.SCOREBOARD) / 2),
(game.SCREEN_HEIGHT / 5) - (game.FONT:getHeight() / 2),
game .SCREEN_WIDTH,

"center"
)
love.graphics.printf(
game.score,
(9 - (game.FONT:getWidth(game.SCOREBOARD) / 2)) +
((game.FONT:getWidth(game.SCOREBOARD) / 2) +
(game.FONT:getWidth(game.score) / 2)),
(game.SCREEN_HEIGHT / 5) - (game.FONT:getHeight() / 2),
game.SCREEN_WIDTH,
"center"

Drag the box runner folder into love.exe / love.app to see the game world. For now, the
red enemy box is rendered off-screen.

Step 3: Move the enemy across the X-axis

Create a new function for updating game state, love.update():

function love.update(dt)
if game.is_active then

if enemy.x > - enemy.WIDTH and not enemy.is collide then
enemy.x = enemy.X - enemy.speed

elseif not enemy.is collide then
enemy.X = enemy.START_X

end
end
end

To see the red enemy box travel across the X-axis, drag the box runner folder into love.exe
/ love.app.

Step 4: Capture keyboard input

Create love.keypressed(), a new function for capturing keyboard input, and Reset (), a
new function for resetting game state.

function love.keypressed(key)
if game.is_active then
if key == "space" and not player.is_jump then
player.y = player.JUMP_HEIGHT
player.is_jump = true
end
elseif key == "space" then
Reset()
end
end

function Reset()
game.score =
player.y = player.START_Y
enemy.x = enemy.START_X
enemy.is collide = false
enemy.speed = enemy.START_SPEED
game.is active = true

Next, in love.update(), in the game.is_active condition, implement the jumping
mechanic, as demonstrated in the following code:

if player.y < player.START_Y then

player.y = player.y + (player.GRAVITY * dt)

else

player.is_ jump = false
end

Step 5: Check for collisions

In love.update(), add the following code for simple collision detection:

if (player.x + player.WIDTH > enemy.x) and (player.x < enemy.x +
enemy .WIDTH) and (player.y > (enemy.y - enemy.HEIGHT))
then
enemy.is_collide = true
game.is_active = false
else
game.score = game.score +
end

Step 6: Increase the difficulty
Add these velocity properties in 1love.load():

game .VELOCITY_COUNTER_LOCAL_MAX =
game.velocity counter =

Finally, implement the velocity mechanic into an all-new love.update():

function love.update(dt)
if game.is_active then
game.velocity counter = game.velocity counter + dt
if
(player.x + player.WIDTH > enemy.x) and (player.x < enemy.Xx +
enemy .WIDTH) and
(player.y > (enemy.y - enemy.HEIGHT))
then
enemy.is_collide = true
game.is_active = false
else
game.score = game.score +
end

if player.y < player.START_Y then

player.y = player.y + (player.GRAVITY * dt)
else

player.is_ jump = false
end

if enemy.x > - enemy.WIDTH and not enemy.is collide then
enemy.x = enemy.X - enemy.speed

elseif not enemy.is _collide then
enemy.Xx = enemy.START_X

end

if game.velocity counter > game.VELOCITY_COUNTER_LOCAL_MAX then
enemy.speed = enemy.speed +
game.velocity_ counter =

end

Drag the box runner folder into 1love.exe / love.app to play the final version of the game.

Reference

Box Runner uses four LOVE callback functions, two LOVE modules, and five custom functions.

Callbacks

The descriptions for the callback functions in this section are excerpted from the LOVE
documentation.

love.draw

Callback function used to draw on the screen every frame. Learn more

love.keypressed

Callback function triggered when a key is pressed. Learn more

love.load

Callback function called exactly once at the beginning of the game. Learn more

love.update

Callback function used to update the state of the game every frame. Learn more

https://love2d.org/wiki/love
https://love2d.org/wiki/love
https://love2d.org/wiki/love.draw
https://love2d.org/wiki/love.keypressed
https://love2d.org/wiki/love.load
https://love2d.org/wiki/love.update

Modules

The descriptions for the modules and functions in this section are excerpted from the LOVE
documentation.

love.graphics

Drawing of shapes and images, management of screen geometry. Learn more

getDimensions

Gets the width and height of the window. Learn more

newFont

Creates a new Font. Learn more

printf

Draws formatted text, with word wrap and alignment. Learn more

rectangle

Draws a rectangle. Learn more

setBackgroundColor

Sets the background color. Learn more

setColor

Sets the color used for drawing. Learn more

setFont

Set an already-loaded Font as the current font. Learn more

love.window

Provides an interface for the program's window. Learn more

setTitle

Sets the window title. Learn more

Custom functions

Box Runner uses custom functions to reset the state of the game and to modularize code with
respect to player and enemy positions that are rendered in love.draw().

https://love2d.org/wiki/love
https://love2d.org/wiki/love
https://love2d.org/wiki/love.graphics
https://love2d.org/wiki/love.graphics.getDimensions
https://love2d.org/wiki/love.graphics.newFont
https://love2d.org/wiki/love.graphics.printf
https://love2d.org/wiki/love.graphics.rectangle
https://love2d.org/wiki/love.graphics.setBackgroundColor
https://love2d.org/wiki/love.graphics.setColor
https://love2d.org/wiki/love.graphics.setFont
https://love2d.org/wiki/love.window
https://love2d.org/wiki/love.window.setTitle

DrawGround

Draws a green, filled-in rectangle that represents the ground on the screen every frame.

Arguments Returns Example usage
number X, Nothing DrawGround(
number vy, ground.x,
number width, ground.y -
number height ground.HEIGHT,
ground .WIDTH,
ground.HEIGHT)

DrawGameText

Draws formatted text that displays game information, such as game . TITLE, game .RETRY,
game . SCOREBOARD, and game .score.

Arguments Returns Example usage
None Nothing DrawGameText ()
DrawPlayer

Draws a yellow, filled-in rectangle that represents the player on the screen every frame.

Arguments Returns Example usage
number X, Nothing DrawPlayer (
number vy, player.x,
number width, player.y -
number height player .HEIGHT,

player .WIDTH,
player .HEIGHT)

DrawEnemy

Draws a red, filled-in rectangle that represents an enemy on the screen every frame.

Arguments Returns Example usage
number X, Nothing DrawEnemy (
number vy, enemy.x,
number width, enemy.y -
number height enemy .HEIGHT,
enemy .WIDTH,

enemy .HEIGHT)

Reset

Resets the initial values of dynamic game settings, such as game.score, player.y,
enemy.Xx, enemy.is_collide, enemy.speed, and game.is_active.

Arguments Returns Example usage

None Nothing Reset()

Further reading

e LOVE documentation

e | ua documentation

Troubleshooting

This section details common issues that developers encounter when programming in LOVE with
Lua. If you're stuck, try the suggested solutions.

Running Lua code with the LOVE game engine

Check that your Lua code is in a file named main. lua and that you are dragging a folder
containing main. luainto love.exe / love.app; you should not be dragging main. lua into
the executable.

Installing LOVE on MAC OS X

During installation, if you see a warning message about issues with app verification, see Apple’s
instructions on how to Safely open apps on your Mac.

https://love2d.org/wiki/love
https://www.lua.org/docs.html
https://support.apple.com/en-us/HT202491

