
Mail Sorting Machine API

1 | P a g e

1. Overview

With the Mail Sorting Machine API, you can significantly reduce the amount of time machine

operators spend entering job information and easily set up a cycle on your sorting machine.

The Mail Sorting Machine API uses HTTP and is RESTful.

We recommend using the ASP.NET Web API for your requests. To begin, add the

Microsoft.AspNet.WebApi.Client library in your application. Then, after declaring and

instantiating an HttpClient object, use that object for your requests, as demonstrated in

the following example.

private void button_Click(System.Object sender, System.EventArgs e)

{

HttpClient client = new HttpClient();

client.BaseAddress = new Uri(“http://localhost:51781/api/”);

string returnString;

returnString = client.DownloadString(“Default”);

label.Text = returnString;

}

https://www.asp.net/web-api

Mail Sorting Machine API

2 | P a g e

• Accessing the API Internally: For production use, and when accessing the API inside

the <COMPANY> secure network, use the following URI:

http://example.com/example-production-endpoint

 Accessing the API Externally: For testing use, and when accessing the API outside of

the <COMPANY> secure network, use the following URI:

http://example.com/example-sandbox-endpoint

2. Accessing the API

There are two ways to access the Mail Sorting Machine API.

Mail Sorting Machine API

3 | P a g e

3. Cycle

The /cycle endpoint is used to identify and create cycles (also known as “passes”).

Create a new cycle when a machine operator successfully scans a job sheet into a sorting

machine. Also, create a new cycle when a job sheet contains a changed mail class or mail

type. Do not create a new cycle if the mail class or mail type has not changed between

scanned job sheets.

For examples on when to create new cycles, refer to the following table.

Job Sheet ID Mail Type Mail Class New Cycle?

100 Letter First-Class Yes (start of day)

100 Letter First-Class No

100 Letter First-Class No

101 Flat First-Class Yes (new mail type)

101 Flat First-Class No

102 Flat First-Class No

102 Flat First-Class No

103 Letter Standard-Class Yes (new mail class)

3.1. Request methods

The /cycle endpoint supports the following HTTP methods and URLs.

Method Production URL Sandbox URL

GET http://example.com/example-
production-endpoint/cycle/{cycleID}

http://example.com/example-
sandbox-endpoint/cycle/{cycleID}

POST http://example.com/example-
production-endpoint/cycle

http://example.com/example-
sandbox-endpoint/cycle

Mail Sorting Machine API

4 | P a g e

3.2. Request query parameters

For POST requests, the /cycle endpoint uses optional query parameters, such as:

Parameter Example Notes

SorterName http://example.com/example-
production-endpoint/cycle?
SorterName=PMT003

Returns a single cycle
record, if found.

CycleDescription http://example.com/example-
production-endpoint/cycle?
CycleDescription=
PMT_18_05_07_07_1103

Returns a single cycle
record, if found.

3.3. Request body parameters

For POST requests, the /cycle endpoint uses optional and required body parameters via a

JSON transaction object, such as:

Name Type Description Required? Example

mailTypeID Integer The type of mail,
identified as follows:

1 = letters (default)

2 = flats

True 1

mailClassTypeID Integer The class of mail,
identified as follows:

1 = first-class (default)

3 = standard-class

True 3

… … … … …

Mail Sorting Machine API

5 | P a g e

3.4. Response body

If successful, a GET request for the /cycle/{cycleID} endpoint returns a response body

via a JSON transaction object with the following structure:

{

 "cycleID": Integer,

 "mailTypeID": Integer,

 "mailClassTypeID": Integer,

 "sorterName": String,

 "sorterID": Integer

}

For more information on supported fields, see the table below.

Name Type Description Example

cycleID Integer A unique identifier for a
cycle; must be unique
for a sorting machine.

123

mailTypeID Integer The type of mail,
identified as follows:

1 = letters (default)

2 = flats

1

mailClassTypeID Integer The class of mail,
identified as follows:

1 = first-class (default)

3 = standard-class

3

sorterName String A unique name for a
sorting machine.

“FCM_LTR”

sorterID Integer A unique identifier for a
sorting machine.

500

Mail Sorting Machine API

6 | P a g e

3.5. Samples

Provides sample requests and responses for the /cycle endpoint.

3.5.1. Sample GET request

GET http://example.com/example-production-endpoint/cycle/{cycleID}

3.5.2. Sample GET response

If successful, the request returns the HTTP status of 200 and a JSON transaction object.

For example responses, refer to the following table.

Status Response

200 {

 "cycleID": 123,

 "mailTypeID": 1,

 "mailClassTypeID": 1,

 "sorterName": PMT018”,

 "sorterID": 527

}

404 Resource Not found

503 Service Unavailable

3.5.3. Sample POST request

POST http://example.com/example-production-endpoint/cycle

BODY {

"MailTypeID": 1,

"MailClassTypeID": 1

}

Mail Sorting Machine API

7 | P a g e

3.5.4. Sample POST response

If successful, the request creates a cycle and returns the HTTP status of 201.

For an example response, refer to the following table.

Status Response

201 “Cycle created at: http://example.com/example-production-
endpoint/cycle/{cycleID}”

